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Basic Definitions

A Compartmental system is composed of a finite
number of macroscopic compartments or pools.

Compartments contain and exchange material. They
are homogeneous and well-mixed.
They do not, in general, correspond to physical

volumes or spaces.

Closed systems have no input or output to
environment.

Open systems may have input to or output from any
compartment.

Fractional transfer coefficients tell us what fraction
of a compartment is exchanged per unit time.

Linear compartmental analysis involves models defined
in terms of linear, constant coefficient differential
equations.
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A simple linear two compartment model
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This system consists of two homogeneous, well-stirred compart-
ments.

Compartment 1 contains a material at concentration x1 kg/m3.
The size of this compartment is q1 = x1V1 kg.

Compartment 2 contains the same material at concentration x2 kg/m3.
The size of this compartment is q2 = x2V2 kg.

A membrane of cross-sectional area A having diffusion perme-
ability constants k21 and k12 m/s for rightward and leftward
exchanges, respectively, separates the compartments.

Loss from compartment 2 to the environment occurs at rate K m3/s.

We might model the perfusion of a radioactive tracer in the blood-
stream (compartment 1) into tissue (compartment 2) using this
system.

A linear system model is applicable only if we assume that
the rate of transfer from a compartment is proportional to
the concentration in that compartment.
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Two compartment model description

This system is characterised by the simultaneous first-order
differential equations:

dq1

dt
= −k21Ax1 + k12Ax2 (1)

dq2

dt
= k21Ax1 − k12Ax2 − Kx2. (2)

Using the relations:

f12 = k12A/V2 s−1 (3)

f21 = k21A/V1 s−1 (4)

f02 = K/V2 s−1, (5)

we obtain the fractional transfer coefficient representation:

dq1

dt
= −f21q1 + f12q2 (6)

dq2

dt
= f21q1 − f12q2 − f02q2. (7)

These equations may be solved (possibly using the unilateral Laplace
transform) to yield:

q1 = c1e
−m1t + c2e

−m2t (8)

q2 = c1

[

f21 − m1

f12

]

e−m1t + c2

[

f21 − m2

f12

]

e−m2t (9)

where

m1 =
f12 + f21 + f02

2
+

1

2

√

(f12 + f21 + f02)
2
− f21f02 (10)

m2 =
f12 + f21 + f02

2
−

1

2

√

(f12 + f21 + f02)
2
− f21f02. (11)

The ci are determined by the initial conditions of the system.

3



Simulation

• We may simulate this particular system using the closed-form
expressions obtained through solution of the differential equa-
tion.

• In general, a compartmental system may have many inputs
and outputs. Also, input functions are often difficult to ex-
press analytically.

• It is thus desirable to seek a method which allows simulation
of these more complicated systems.

• We exploit Matlab’s ability to simulate arbitrary state-space
models, to perform such simulations.

A state-space model describes the time trajectories (first deriva-
tives) of internal states of a system in terms of all other system
state variables, and system inputs. The internal state-space model
is described by a system of first-order differential equations:

ẋ1 = a11x1 + a12x2 + . . . + a1nxn + b11u1 + . . . + b1pup

ẋ2 = a21x1 + a22x2 + . . . + a2nxn + b21u1 + . . . + b2pup

...

ẋm = am1x1 + am2x2 + . . . + amnxn + bm1u1 + . . . + bmpup

where the xi are the system state variables and the ui are the system
inputs.

We may restate the above in matrix form as:

Ẋ = AX + BU. (12)
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Simulation continued

In compartmental analysis, a state variable might be assigned to
the mass or concentration in each compartment. Thus, for the
compartmental model depicted as:

k21

k12

I(t)

whose dynamics are embodied by the DE’s:

dq1

dt
= −f21q1 + f12q2 + I(t) (13)

dq2

dt
= f21q1 − f12q2 (14)

we find

A =

[

−f21 f12

f21 −f12

]

B =

[

1
0

]

(15)

The general state-space model also allows us the specify how the
internal states xi of the system are measured. Measurements are
allowed to depend both on the state variables and on the system
inputs:

y1 = c11x1 + c12x2 + . . . + c1nxn + d11u1 + d12u2 + . . . + d1pup

y2 = c21x1 + c22x2 + . . . + c2nxn + d21u1 + d22u2 + . . . + d2pup

...

yk = ck1x1 + ck2x2 + . . . + cknxn + dk1u1 + dk2u2 + . . . + dkpup

where the yi are the system outputs measured.
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Simulation continued

The corresponding matrix formulation, is:

Y = CX + DU. (16)

For the model under consideration, since we wish to consider both
state variables as system output, we have the matrices:

C =

[

1 0
0 1

]

D =

[

0
0

]

. (17)

Let’s see how we can use the Matlab function lsim.m to simulate
this state-space model. The function simtwocomp.m illustrates
this:

function [Y,T] = simtwocomp(f12, f21, U1, U2, t, X0)

% simulates a two compartment model given:
% f12, f21: fractional rate constants in units M/M / T
% U1, U2: input function waveforms over abscissa t for
% compartments 1 (U1) and 2 (U2). May be empty ([]).

% prepare input function matrix U

G = zeros(2);

numinputs = 2;
U = zeros(length(t), numinputs);

if ~isempty(U1)
U(:,1) = U1(:);
G(1,1) = 1;

end;
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Matlab simulation continued

if ~isempty(U2)
U(:,2) = U2(:);
G(2,2) = 1;

end;

% construct state space model matrices

A = [-f21 f12
f21 -f12];

B = G;

C = [1 0
0 1];

D = [0 0
0 0];

% simulate linear system

[Y,T] = lsim(A,B,C,D,U,t,X0);

The use of this function is demonstrated by the script runtwocomp.m:

% script to invoke simulation of two compartment model

% set parameters

f21 = .8; % ml/ml per minute
f12 = .1; % ml/ml per minute
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Matlab simulation continued

ts = .05; % sampling rate

t = 0:ts:10; % minutes

U1 = 64 * t.^2 .* exp(-t/.3); % input function for compartment 1

U2 = []; % input function for compartment 2

X0 = [.0

.0]; % initial conditions

[Y,X] = simtwocomp(f12, f21, U1, U2, t, X0);

out1= Y(:,1);

out2= Y(:,2);

figure(1)

plot(t,out1, t, out2, ’--’, t, U1, ’:’);

legend(’Compartment 1 tracer mass’, ’Compartment 2 tracer mass’, ...

’Input function’, 0);

title(’Simulation waveforms for two compartment model’);

xlabel(’time (minutes)’);

ylabel(’mass’);
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Simulation results

Now, let’s have a look what we get out of the system under these
conditions:
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We note that this is the response to an input function of the form

I(t) = C t2 e−
t
τ , (18)

which is an ideal approximation of a typical blood input function.
We may find the system impulse response by making the alternative
assignment:

U1 = zeros(size(t));

U1(1) = 1;
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Simulation results

Simulation then yields:
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We may also allow for the possibility of residual amounts of tracer
material present in the compartments at the start of measurement:

X0 = [0.1

0.3];
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Simulation results

We observe how the presence of non-zero initial conditions compli-
cates the forms of the responses obtained:
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